

Architected Agile Solutions for Software-Reliant
Systems

Barry Boehm, Jo Ann Lane, Supannika
Koolmanojwong

University of Southern California
{boehm, jolane, koolmano} at usc.edu

Richard Turner
Stevens Institute of Technology

rturner at stevens.edu

Copyright © 2009 by USC CSSE. Published and used by INCOSE with permission.

Abstract. Systems are becoming increasingly reliant on software due to needs for rapid fielding
of “70%” capabilities, interoperability, net-centricity, and rapid adaptation to change. The latter
need has led to increased interest in agile methods of software development, in which teams rely
on shared tacit interpersonal knowledge rather than explicit documented knowledge. However,
such capabilities often need to be scaled up to higher level of performance and assurance,
requiring stronger architectural support. Several organizations have recently transformed
themselves by developing successful combinations of agility and architecture that scale up to
projects of up to 100 personnel. This paper identifies a set of key principles for such architected
agile solutions for software-reliant systems, and illustrates them with several case studies.

Introduction
Systems are becoming increasingly reliant on software due to needs for rapid fielding of “70%”
capabilities, interoperability, net-centricity, and rapid adaptation to change. This trend is shown
in Figure 1, illustrating the percentage of aircraft functionality that relies on software vs. time,
and the resulting system challenges as software was used to adapt to change [Van Tilborg, 2006].

Figure 1. Trends in Software-Reliant Systems: Aircraft

Overall, small, less mission-critical projects with high rates of change are best accomplished by
highly-skilled agile teams able to operate on shared, tacit knowledge with little documentation.
Large, more mission-critical projects with less change and mixed developer skill levels are more
successful using explicit documented knowledge such as architectural views and project plans to
succeed. If the requirements of these large projects are relatively stable, architectures and plans
will change infrequently, and a pure documented-architecture approach will succeed. However,
as seen in Figure 1, large projects increasingly need product and process architectures that enable
them to use agility to support more volatile requirements in areas like user interfaces,
competition-critical features, or interfaces with independent, rapidly evolving external systems.

Also, our experiences in the commercial and public-service sectors indicate that a growing
number of systems must integrate into larger enterprise software frameworks and systems of
systems. This leads to complex interactions with evolving COTS products, legacy systems, and
external systems, with the expectation that these systems “never fail.” Emergent requirements,
rapid changes, reused components, high levels of assurance, and dynamic market factors must
also be addressed.

The relative importance of these different application sectors depends on what is counted.
Organizations dealing mainly with large numbers of small, dynamic, less-critical projects will
count the number of such projects. Organizations dealing with a mix of large and small projects
will more likely count the investment costs and skilled effort that are consumed by their projects.

Figure 2 shows how the relative importance of agility and architecture varies when counting
numbers of projects or percentage of costs. Drawn from Appendix E of [Boehm and Turner
2004] the information is based on data provided in [Highsmith 2002] of the relative number of
projects in three size ranges across various business sectors. The particular data shown in Figure
2 is from the financial sector, with 65% of the projects having less than 10 people, 25% between
11 and 50 people, and 10% over 50 people.

Figure 2. Relative Importance of Agility and Architecture

The boundary between Low and High Size projects is taken as 25 people. In 1999, eXtreme
Programming (XP) innovator Kent Beck said, “Size clearly matters. You probably couldn’t run
an XP project with a hundred programmers. Not fifty. Not twenty, probably. Ten is definitely
doable.” [Beck 1999]. Since then, 20-25 person pure-agile projects have succeeded; for larger
projects, investments in architecture are needed [Elssamadisy and Schalliol 2002]. The relative
stability data come from cost model Requirements Volatility parameter trends, in which High
stability means less than 5% change in requirements per year.

In this paper, we will identify key principles for balancing agility and architecture in the largest-
cost sector where both agility and architecture are needed. In this sector, the software
development activities must be lean and agile but also need a strong flexible architecture
undergirding software functionality. If either is not adequately addressed, the software will not
be viable over the long term. It will be late to market (or late to the war), too difficult to evolve,
quickly reach a dead-end, and suffer a relatively short life.

We will also provide a risk-driven process framework, the Incremental Commitment Model, that
enables projects to determine what mix of agile and architected approaches bets fits their system
situation, and will provide quantitative results that show how this mix is generally a function of
the system’s size, criticality, and requirements volatility. We will then analyze case studies of
one of the most successful mixed approaches, the Architected Agile approach, and present
critical success factors for applying the approach.

Key Principles
Several analyses of successful programs have been performed to determine the kind of processes
that satisfactorily address current trends and challenges [OUSD AT&L 2008; Pew and Mavor
2007] The strengths and difficulties of current process models have also been analyzed [Pew and
Mavor 2007], finding that while each had strengths, each needed further refinements to address
all of the identified challenges. The most important conclusion, though, was that there were key
process principles that address the challenges, and that the form of the process models was less
important than the ability to adopt the principles. These key principles are:

1. Commitment and accountability of success-critical stakeholders

2. Stakeholder satisficing based on success-based negotiations and tradeoffs

3. Incremental and evolutionary growth of system definition and stakeholder commitment.

4. Iterative system development and definition

5. Concurrent system definition and development allowing early fielding of core capabilities,
continual adaptation to change, and timely growth of complex systems without waiting for
every requirement and subsystem to be defined

6. Risk management – risk driven anchor point milestones which are key to synchronizing and
stabilizing all of this concurrent activity.

A new process model framework, the Incremental Commitment Model (ICM) [Boehm and Lane
2008], was developed to build on the strengths of current process models: early verification and
validation concepts in the V-model, concurrency concepts in the Concurrent Engineering model,
lighter-weight concepts in the Agile and Lean models, risk-driven concepts in the spiral model,
the phases and anchor points in the Rational Unified Process (RUP), and recent extensions of the
spiral model to address SoS acquisition. The model framework, illustrated in Figure 3,
explicitly:

• Emphasizes concurrent engineering of requirements and solutions
• Establishes Feasibility Rationales as pass/fail milestone criteria
• Enables risk-driven avoidance of unnecessary documents, phases, and reviews

• Provides support for a stabilized current-increment development concurrently with a separate
change processing and rebaselining activity to prepare for appropriate and stabilized
development of the next increment.

Figure 3. ICM Overview

Figure 3 shows the relationship between the concurrently engineered life cycle phases, the
stakeholder commitment review points with their use of feasibility rationales to assess
compatibility, and the resulting risk assessment to decide how to proceed at each commitment
review point. There are a number of alternatives at each commitment point, leading to many
risk-driven paths through the life cycle. These are:

(1) the risk is negligible and no further analysis and evaluation activities are needed to
complete the next phase;

(2) the risk is acceptable and work can proceed to the next life cycle phase:

(3) the risk is addressable but requires backtracking; or

(4) the risk is too great and the development process should be rescoped or halted.

Risk is assessed by the system’s success-critical stakeholders, whose commitment will be based
on whether the current level of system definition gives sufficient evidence that the system will
satisfy their value propositions.

The ICM is a hybrid agile/plan-driven process that integrates a) agile processes for assessing the
system environment and user needs and then planning for the implementation of new and
modified system capabilities, b) plan-driven (often time-boxed) processes to develop and field
new capabilities, and c) continuous verification and validation (V&V) to provide high assurance
of the requisite system qualities. Figure 4 shows one of the risk-driven process patterns of the
ICM that best fits the need for simultaneously accommodating rapid change and the need for
high assurance on larger projects. High assurance is achieved by stabilizing a build-to-
specification development team, anticipating foreseeable change and architecting for its easy

accommodation, providing continuous V&V to ensure rapid and efficient defect fixes, and
diverting unforeseeable changes to the concurrently-operating agile team assessing the changes
and rebaselining the plans and specifications for development of the next increment by the build-
to-spec team.

Figure 4. Hybrid Agile/Plan-Driven Process [Boehm and Lane 2008]

The ICM framework acknowledges there can be no “one size fits all” process model and that a
key feature of any successful framework is the ability to tailor processes based on key project
characteristics and risks. The ICM uses project characteristics and risks to determine how much
process agility or rigor is enough to satisfy the system’s objectives subject to its constraints. As a
result, several common types of software-intensive systems have been identified along with
guidance for tailoring the ICM framework for each case [Boehm and Lane 2008]. These
common types range from small agile types of projects, through the larger-project pattern in
Figure 4, to more complex, adaptive processes for nondirected systems of systems. The goal of
the ICM tailoring process is to establish the right amount of rigor, assurance, and predictability,
while remaining agile and timely.

Successfully satisficing with respect to a diverse set of stakeholders in a multi-team development
environment is critical to larger software projects. Studies [Carlile 2002] that have focused on
knowledge management and transfer between different groups such as stakeholders and product
developers and distributed development teams have identified key “boundary objects” that are
used to guide the development and integration of new products such as software. These include
key models such as architecture and data models that allow the different developers to quickly
communicate with non-technical stakeholders and other developers and to coordinate work so
that pieces come together quickly in the integration environment [OUSD (AT&L), 2008]. As
shown in the next section, cost estimation models can support mutual understanding of cost
implications of project decisions -- such as how little or how much to invest in up-front
architecting.

How Much Architecting is Enough?
Size, criticality, and volatility are key decision drivers for focusing on agile or architected
approaches. But critical questions remain about how much architecting is enough for a particular
project. Here we provide a quantitative approach that has helped projects address this question.
It extends the ROI of SE analysis described in [Boehm 2008].

The graphs in Figure 5 show the results of a risk-driven “how much architecting is enough”
analysis, based on the COCOMO II Architecture and Risk Resolution (RESL) factor. This factor
was calibrated along with 22 others to 161 project data points. It relates the amount of extra
rework effort on a project to the percent of project effort devoted to software-intensive system
architecting. The analysis indicated that the amount of rework was an exponential function of
project size.

A small (10 thousand equivalent source lines of code, or KSLOC) could fairly easily adapt its
architecture to rapid change via refactoring or its equivalent, with a rework penalty of 14%
between minimal and extremely thorough architecture and risk resolution. However, a very
large (10,000 KSLOC) project would incur a corresponding rework penalty of 91%, covering
such effort sources as integration rework due to large-component interface incompatibilities and
critical performance shortfalls.

Actually, the RESL factor includes several other architecture-related attributes besides the
amount of architecting investment, such as available personnel capabilities, architecting support
tools, and the degree of architectural risks requiring resolution. Also, the analysis assumes that
the other COCOMO II cost drivers do not affect the project outcomes.

The effects of rapid change (volatility) and high assurance (criticality) on the sweet spots are
shown in the right hand graph. Here, the solid black lines represent the average-case cost of
rework, architecting, and total cost for a 100-KSLOC project as shown at the left. The dotted
red lines show the effect on the cost of architecting and total cost if rapid change adds 50% to the
cost of architecture and risk resolution. Quantitatively, this moves the sweet spot from roughly
20% to 10% of effective architecture investment (but actually 15% due to the 50% cost penalty).
Thus, high investments in architecture and other documentation do not have a positive return on
investment due to the high costs of documentation rework for rapid-change adaptation.
The dashed blue lines at the right represent a conservative analysis of the effects of failure cost
of architecting shortfalls on the project’s effective business cost and architecting sweet spot. It
assumes that the costs of architecture shortfalls are not only added rework, but also losses to the
organization’s operational effectiveness and productivity. These are conservatively assumed to
add 50% to the project-rework cost of architecture shortfalls to the organization. In most cases
for high-assurance systems, the added cost would be considerably higher.

Figure 5. How Much Architecting is Enough?

Quantitatively, this moves the sweet spot from roughly 20% to over 30% as the most cost-
effective investment in architecting for a 100-KSLOC project. It is good to note that the “sweet
spots” are actually relatively flat “sweet regions” extending 5-10% to the left and right of the
“sweet spots.” However, moving to the edges of a sweet region increases the risk of significant
losses if some project assumptions turn out to be optimistic.

Early Architected-Agile Success Cases
Most successful large scale projects have learned to balance architecting and agility. When these
projects find a good balance, they can set up a battle-rhythm using a process somewhat akin to
the hybrid agile/plan-driven process described in Figure 4. They welcome change and manage it
through a product backlog, planning capabilities for multiple future increments, based on
stakeholder priorities. They stabilize development for the current increment by defining the
changes to be incorporated into the update cycle. Development is supported by continuous
V&V, often with mature integration and test environments that support experimentation as well
as quality assessments.

A comparison of the 6 key ICM principles [Boehm and Lane 2008; Poppendieck and
Poppendieck 2003; Agile Manifesto 2009] with characteristics of lean and agile principles was
conducted and a summary of the results are shown in Table 1. Although there are differences in
the level of detail in the way each set of principles is specified, there are no substantial
differences with respect to architecting. All focus on efficiently performing value-adding

activities at the appropriate point in the development life cycle and eliminating activities that
don’t add value.

Table 1. Key Principles Comparison
ICM Principles

[Boehm and Lane 2007]
Related Lean Principles

[Poppendieck and Poppendieck 2003]
Related Agile Principles

[Boehm 2007; Agile Manifesto 2007]
(1) Commitment and
accountability of success-
critical stakeholders

• Respected leaders and champions
• Team commitment
• Master developers to guide decisions,

make rapid progress, and develop
high-quality software

• Business people and developers
must work together daily throughout
the project

• Provide the developers with
environment and support they need

(2) Success-critical
stakeholder satisficing

• Joint customer-developer iteration
planning

• Value stream mapping

• Joint customer-developer iteration
planning

• Satisfy the customer through early
and continuous delivery of valuable
software

(3) Incremental growth of
system definition and
stakeholder commitment
(4) Iterative development
cycles

• Balance experimentation with
deliberation and review

• Iteration planning with negotiable
scope and convergence

• Deliver working software frequently
• Working software is the primary

measure of progress

(5) Concurrent
engineering

• Decide as late as possible to support
concurrent development while keeping
options open

• Ensure emergence of a good
architecture through reuse, integrated
problem solving, and experienced
developers

• The best architectures, requirements,
and designs emerge from self-
organizing teams.

(6) Risk-based activity
levels and milestones

• Eliminate waste
• Value stream mapping

• Team reflects periodically on how to
become more effective, then tunes
and adjusts its behavior accordingly

• Simplicity--the art of maximizing
the amount of work not done--is
essential.

This section provides five examples. First, we summarize three architected-agile case studies
involving multinational US and European corporate transformations. In each, top management
commissioned an internal technical and management expert to lead a corporate-wide effort to
transform the company’s software development practices into a more agile Scrum of Scrums
approach. All used a transformed corporate information architecture and framework that enabled
compatible agile development while satisfying various corporate assurance and governance
needs such as medical safety, physical platform safety, always-on availability, and US Sarbanes-
Oxley corporate information management accountability [Highsmith 2002]

Next, we summarize a Scrum of Scrums approach evolved by a large US aerospace company to
enable more rapid and cost-effective logistics support for an evolving product line of aerospace
vehicles. Finally, we describe the Composite Health Care System (CHCS) [Lane and Zubrow
1996, MHS Help Desk 2009] a large Government health care system, that evolved a more lean
and architected-agile approach as part of a major process improvement, while providing
continuity of service across over 700 Department of Defense (DoD) hospitals and clinics

worldwide. Each of these case studies has risk-driven approaches similar to the Supply Chain
Management example in Boehm-Turner [Boehm and Turner 2004], but with additional
considerations of transforming their enterprises across multiple user sites and applications.

Architected Agile Corporate Transformations. The first of these corporate transformations
involved a US medical services company with over 1000 software developers in the US, two
European countries, and India. The corporation was on the brink of failure, due largely to its
slow, error-prone, and incompatible software applications and processes. Top management
commissioned a senior internal technical and management expert in both medical safety-critical
applications and agile development, to organize a corporate-wide team to transform the
company’s software development approach to address its agility, safety, and Sarbanes-Oxley
governance and accountability problems.
Software technology and project management leaders from all of its major sites were brought
together to architect a corporate information framework, and develop a corporate architected-
agile process approach. The resulting Scrum of Scrums approach was successfully used by the
team in a collocated pilot project to create the new information framework in a way that would
accommodate continuity of service in their existing operations.

Based on the success of this pilot project, the team members returned to their sites and led
similar transformational efforts. Within three years, they had almost 100 Scrum teams and 1000
software developers using compatible and coordinated architected-agile approaches. The effort
involved their customers and marketers in the effort. Expectations were managed via the pilot
project. The release management approach included a 2-12 week architecting Sprint Zero, a
series of 3-10 one-month development Sprints, a Release Sprint, and 1 to 6 months of beta
testing; the next release Sprint Zero overlapped the release Sprint and beta testing. Their agile
Scrum approach involved a tailored mix of eXtreme Programming (XP) and corporate practices,
6-12 person teams with dedicated team rooms, and global teams with wiki and daily virtual
meeting support, working as if located next-door.

The second and third corporate transformations were similar. One involved a World-100
European products company with major software sites in Europe, the US, India, and China. The
third involved a large European IT company with major development centers in Europe, India,
and Israel. Each applied the six key principles above of (1) stakeholder commitment (top
management, developers, external stakeholders); (2) stakeholder satisficing (e.g.,via Scrum
prioritized backlogs); (3,4,5) incremental, evolutionary, iterative, concurrent development
starting with a talented early-success core team from all major sites; and (6) risk-driven
commitment milestones for expanding the number and distribution of the Scrum teams (over 30
in three years for company-2, including development of a new corporate architecture; over 40 in
one year for company-3, which already had a strong corporate architecture).

Automated Maintenance Support System. This project was done by a major aerospace
company on a government contract. It involved an advanced, highly automated vehicle
maintenance application with extensive on-board trend and anomaly analysis on each vehicle,
and net-centric communication of impending service needs to the nearest relevant vehicle
maintenance center. The multi-mission vehicle versions and components can encounter many
unanticipated interaction effects, leading to a high rate of change in the maintenance and
diagnostic software.

Originally, the project used a Scrum of Scrums organization similar to those involved in the three
corporate-internal case studies above. But the project encountered numerous coordination
challenges across the multi-mission, multi-owner vehicle versions. These included decision
priorities for common components and product backlog, multi-team requirement
implementations, and needs for teams to interrupt their progress to help other teams. The number
and magnitude of these challenges caused the classic single-owner Scrum of Scrums architected-
agile approach to lose momentum.

The project recognized this and evolved to a more decentralized Scrum-based approach, with
centrifugal tendencies monitored and resolved by an empowered Product Framework Group
(PFG) consisting of the product owners and technical leads from each development team, and the
project systems engineering, architecting, construction, and test leads. The PFG meets near the
end of an iteration to assess progress and problems, and to steer the priorities of the upcoming
iteration by writing new backlog items and reprioritizing the product backlog. A few days after
the start of the next iteration, the PFG meets again to assess what was planned vs. what was
needed, and to make necessary adjustments.

This approach has been successful in keeping the project’s momentum at a high level and
pointed in the right direction. This example and similar multi-mission, multi-stakeholder net-
centric systems of systems have led to somewhat different combinations of agility and
architecture. But overall, each has found ways to succeed by applying the six critical success
factor principles discussed above. It is also important to remember that it takes good people to
understand when and how to apply the principles to determine, tailor, and apply processes or
architectures to complex system situations.

Composite Health Care System (CHCS) [Lane and Zubrow 1996, MHS Help Desk 2009].
CHCS is an automated health care system that in 1996 was installed in about 500 Department of
Defense (DoD) hospitals and clinics worldwide. The application consists of several subsystems:
patient administration, patient appointments and scheduling, managed care program, clinical,
laboratory, radiology, pharmacy, dietetics, quality assurance, workload accounting menu,
medical services accounting, ambulatory data menu, and medical records tracking. In a study of
process improvements initiated in the mid 1990s, Lane and Zubrow [Lane and Zubrow, 1996]
documented key attributes of the development process as well as the successes in improving
software quality, time to market, and customer satisfaction. The process improvement activities
were implemented in response to customer dissatisfaction with increasing development cycle
durations for new software releases and unacceptable software quality when a release was
installed at an alpha site for operational test and evaluation. Root cause analysis showed that
these problems were primarily due to requirements creep late in the development cycle, causing
both a slip in the schedule and inadequate testing before the software was delivered.

The improvements initiated on this program were all related to key ICM principles and
architected agile practices: committed and accountable stakeholders and development team,
more continuous V&V (peer reviews and testing) throughout the development cycle, agile
analysis of incoming changes requests and deferring as much as possible to future releases, and
stabilization of the current development cycle. This stabilization of the development cycle
resulted in development teams working in parallel on the current major release and two
maintenance updates while planning the next major release instead of the previous approach of
continuing to slip new features into the current release right up until delivery.

To quantify the impact of these planned changes, the organization collected a set of
measurements with respect to the previous software release and established this as their baseline
(V4.11). These sets of measures were customer satisfaction, developer productivity (average
number of logical source statements (LSS) output per month during the development cycle), cost
per LSS (average number of dollars expended to develop each LSS), cycle time (number of
months from software release start to delivery at an alpha site), and error rates (number of
defects detected during the first 30 days of operation and the number detected during the first
year of operation). The measures where then captured for the next release (V4.2) in which the
process improvements had been implemented and compared to the baseline. Analysis of the new
release measures showed that in the first increment after the process changes were implemented,
the cost per LSS dropped 29%, cycle time dropped 46%, and error rates at the alpha site dropped
90%. Additional improvements in later releases were achieved with further development
environment tool upgrades and the application of more advanced processes, but none of the
subsequent results were as dramatic as the first set.

Key to continuing to deliver new, high quality capabilities every year were a stable but flexible
software architecture and a core database managed by a single database team, continual
stakeholder involvement, managing the contents of each upgrade, frequent status checks with
committed and accountable stakeholders to manage obstacles and make timely decisions,
minimal documentation, and continuous V&V. High priority features were assigned to each
major increment and lower priority features in the product backlog were incorporated when the
associated code was undergoing change for a high priority feature. As would be expected for a
health care system, patient safety was a top priority and continuous testing was necessary to meet
this goal.

Implications for Practice and Future Research
The above cases illustrate successes in the use of architected agile and show different approaches
for using an architected agile process as well as the business drivers that led to the migration of
an architected agile process. One would like to have a set of criteria for determining when to use
an architected agile process versus a pure agile process versus a pure architected process. In
addition, one would also like a set of criteria for determining which of a number of common-case
system and software engineering processes to use, including cases where multiple systems form
a system of systems (SoS). This set of criteria could then also provide guidance for selecting the
process type(s) best suited for the various SoS constituent systems, or for parts of very diverse
individual systems.

Our recent research in this area has identified a set of common-case processes and risk-driven
criteria that indicate the homeground for each process, and also provide examples and likely
build and release durations that are used in these common-case processes. Over time and with
experience in their use, we have evolved this set of common-case processes and their associated
attributes and decision criteria. The information presented in Table 2 below is a summary of
version 4. The top row provides the criteria; the left-hand column names the common cases. In
general, the special cases are listed in order of complexity and rigor. More detail is provided in
Chapter 5 of [Boehm and Lane, 2008].

Table 2. Homegrounds for Common Software-Intensive System Processes

Common Case Size,
Complexity

Change Rate
(%/Month)

Application
Criticality

Available NDI
Products

Organizational and
Personnel Capability

Use NDI Complete
Agile Low 1-30 Low-Med Good; in place Agile-ready Med-high
Architected Agile Med 1-10 Med-High Good; most in

place
Agile-ready Med-high

Formal Methods Low 0.3 Extra High None Strong formal methods
experience

HW with embedded
SW component

Low 0.3-1 Med-Very
High

Good; in place Experienced; med-high

Indivisible IOC Med-High 0.3-1 High- Very
High

Some in place Experienced; med-high

NDI- intensive Med-High 0.3-3 Med-Very
High

NDI-driven
architecture

NDI- experienced;
med-high

Hybrid agile/ plan-
driven

Med-Very
High

Mixed parts; 1-
10

Mixed parts;
Med-Very
High

Mixed parts Mixed parts

Multi-owner system of
systems

Very High Mixed parts; 1-
10

Very High Many NDIs;
some in place

Related experience,
med-high

Family of systems Med-Very
High

1-3 Med-Very
High

Some in place Related experience,
med-high

Brownfield High-Very
High

0.3-3 Med-High NDI as legacy
replacement

Legacy re-engineering

Net- Centric
Services—
Community Support

Low-Med 0.3-3 Low-Med Tailorable
service elements

NDI- experienced

Net-Centric
Services—Quick
Response Decision
Suppport

Med-High 3-30 Med-High Tailorable
service elements

NDI- experienced

Legend : HW: Hardware; IOC: Initial Operational Capability; NDI: Non-Development Item; SW: Software.

These criteria and the additional common-case information provided in [Boehm and Lane, 2008]
can be used by organizations today. In those cases where an organization needs to use a certain
process because of contractual constraints or business drivers, mismatches with the criteria and
risks can be identified and appropriate mitigations can be taken to foster success.

As indicated by the evolving nature of the decision criteria and number of common-case
processes, much further research will be needed to continue to evolve these and add detail about
their characteristics and implementation sub-processes. We are continuing to address these, but
welcome further improvements based on others’ experience and research.

Conclusions
There are no single one-size-fits-all process or product models that can be applied to the wide
variety of systems needing to be addressed now and in the future. However, there are key
principles (stakeholder commitment and accountability; stakeholder satisficing; incremental and
evolutionary growth of system definition and stakeholder commitment; iterative system

development and definition; and risk management) for determining appropriate process and
product models for different system situations.

Table 1 showed how these principles are addressed by three approaches: lean development, agile
development, and the Incremental Commitment Model (ICM). Each of these has strengths; the
ICM provides the most explicit risk-based decision criteria for determining which overall process
category fits which particular situation, and for tailoring of variations within and among the
process categories, as with the Corporate Transformations, AMSS, and CHCS examples.

Another key set of decisions involves how much of agility and architecting is enough. A
multivariate analysis of 161 projects, represented in Figure 5, provides additional guidance for
such decisions, depending primarily on project size, criticality, and volatility. Finally, it is
important to remember that good people are essential in determining how to determine, tailor,
and apply process or architectures to complex system situations.

References
Beck, K. (1999); Extreme Programming Explained. Reading, MA: Addison-Wesley.

Boehm, B. (2007); “Agility and quality.” IBM Agile Conference, May 15, 2007; ICSE
Workshop on Software Quality, May 21, 2007.

Boehm, B. and Turner, R. (2004); Balancing agility and discipline: a guide for the perplexed.
Addison-Wesley, Boston.

Boehm, B. and Lane, J. (2008); Incremental Commitment Model Guide, version 0.5, Center for
Systems and Software Engineering Technical Report,
http://csse.usc.edu/csse/TECHRPTS/2009/usc-csse-2009-500/usc-
csse-2009-500.pdf.

Boehm, B., Valerdi, R., and Honour, E. (2008); “The ROI of Systems Engineering: Some
Quantitative Results for Software-Intensive Systems,” Systems Engineering, Vol. 11, No.3, Fall
2008, pp. 221-234.

Carlile, P. (2002); “A pragmatic view of knowledge and boundaries: boundary objects in new
product development.” Organization Science Vol. 13: 442-455.

Elssamadisy, A. and Schalliol, G. (2002); “Recognizing and Responding to ‘Bad Smells’ in
Extreme Programming,” Proceedings, ICSE 2002, pp. 617-622.

Highsmith, J. (2002); Agile Software Development Ecosystems. Boston: Addison-Wesley.

Lane, J. and Zubrow, D. (1996); “Metrics focus brings about improvement in health care
software development. Proceedings, SEI Software Engineering Process Group Conference,
March 1996.

Military Health System (MHS) Help Desk, System: CHCS, http://www.mhs-
helpdesk.com/Pages/chcs.asp , accessed on 8/4/2009.

Office of the Under Secretary of Defense for Acquisition, Technology and Logistics (OUSD
AT&L), (2008); Systems engineering for systems of systems, Version 1.0. Washington, DC:
Pentagon.

http://csse.usc.edu/csse/TECHRPTS/2009/usc-csse-2009-500/usc-csse-2009-500.pdf�
http://csse.usc.edu/csse/TECHRPTS/2009/usc-csse-2009-500/usc-csse-2009-500.pdf�
http://www.mhs-helpdesk.com/Pages/chcs.asp�
http://www.mhs-helpdesk.com/Pages/chcs.asp�

Pew, R. and Mavor, A. (2007); Human-system integration in the system development process: a
new look. National Academy Press, 2007.

Poppendieck, M and Poppendieck, T. (2003); Lean software development, an agile toolkit.
Addison Wesley.

Van Tilborg, A., Acting DUSD(S&T), (2006); “Advancing Software-Intensive Systems
Producibility: Charge to NRC Committee,” September 27, 2006 (citing Defense Acquisition
University as source).

Principles behind the agile manifesto,
http://agilemanifesto.org/principles.html. accessed on 8/4/2009.

BIOGRAPHIES
Dr. Barry Boehm is the TRW professor of software engineering at the University of Southern
California; and the Director of Research of the DoD-Stevens-USC Systems Engineering
Research Center (SERC). He was previously in software engineering, systems engineering, and
management positions at General Dynamics, Rand, TRW, and DARPA, where he managed the
acquisition of more than $1 billion worth of advanced information technology systems. Dr.
Boehm originated the spiral model, the Constructive Cost Model, and the stakeholder win-win
approach to software management and requirements negotiation. He is a Fellow of INCOSE,
ACM, AIAA, and IEEE, and a member of the US NAE. Contact him at boehm@usc.edu.

Dr. Jo Ann Lane is a Research Assistant Professor at the University of Southern California.
She is currently working on process and cost models for system of systems engineering and
studying the application of lean principles in the SoS engineering environment. Prior to this, she
was a key technical member of Science Applications International Corporation’s Software and
Systems Integration Group responsible for the development and integration of software-intensive
systems and systems of systems. Contact her at jolane@usc.edu

Supannika Koolmanojwong is

.

currently a PhD student at the University of Southern California
Center for Systems and Software Engineering. Her primary research area focuses on software
process improvement especially in Architected Agile, NDI-Intensive, and Net-Centric Services
areas. Prior to this, she was a lecturer at Assumption University, Thailand and a RUP/OpenUp
Content Developer at IBM Software Group. Contact her at koolmano@usc.edu

Dr. Richard Turner is a Distinguished Service Professor at Stevens Institute, a Visiting
Scientist at the Software Engineering Institute of Carnegie Mellon University and a respected
researcher and consultant with thirty years of international experience in systems, software and
acquisition engineering. Dr. Turner is co-author of three books: Balancing Agility and
Discipline: A Guide for the Perplexed, CMMI Distilled, and CMMI Survival Guide: Just Enough
Process Improvement. Contact him at

.

rturner@stevens.edu.

http://agilemanifesto.org/principles.html.%20accessed%20on%208/4/2009�
mailto:boehm@usc.edu�
mailto:jolane@usc.edu�
mailto:koolmano@usc.edu�
mailto:rturner@stevens.edu�

	Abstract. Systems are becoming increasingly reliant on software due to needs for rapid fielding of “70%” capabilities, interoperability, net-centricity, and rapid adaptation to change. The latter need has led to increased interest in agile methods of...
	Introduction
	Key Principles
	A new process model framework, the Incremental Commitment Model (ICM) [Boehm and Lane 2008], was developed to build on the strengths of current process models: early verification and validation concepts in the V-model, concurrency concepts in the Con...
	How Much Architecting is Enough?
	Figure 5. How Much Architecting is Enough?
	Early Architected-Agile Success Cases
	Implications for Practice and Future Research
	Conclusions
	References
	Principles behind the agile manifesto, http://agilemanifesto.org/principles.html. accessed on 8/4/2009.
	BIOGRAPHIES

	Prev:
	Next:
	Close:
	First:

